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Summary. The calculation of vibrational states using a gradient extremal 
path is discussed. Gradient extremal paths are defined by local criteria, which 
lead to stable solutions. This has certain advantages in comparison with a 
steepest-descent path, which is often diffficult to determine accurately. For 
cases where a reaction path formalism is applicable, a path based on the 
gradient extremal concept gives results in close agreement with those ob- 
tained using traditional steepest-descent methods. We present algorithms for 
carrying out such calculations and also give some numerical results. 
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1. Introduction 

The study of large amplitude molecular vibrations is important for understand- 
ing chemical reactions and rearrangement processes. For calculations of these 
vibrations, it is usually necessary to determine adiabatic potential surfaces in 
large regions of coordinate space, rather than force constants evaluated only at 
the equilibrium structures. A substantial calculational effort is required to attain 
sufficient accuracy for the electronic part of the potential. It is therefore desirable 
to reduce the number of points required to construct the potential surface 
without loss of the information necessary to describe the large amplitude 
vibration. This problem is usually solved by means of a reaction path approach, 
in which molecular vibrations are described in a narrow region along the path. 
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Calculations of chemical dynamics using a reaction path were first carried out 
in the 1960's. Pioneering work was done by Hofacker et al. [1] and by Marcus 
[2], who proposed a vibrationally adiabatic model using a natural collision 
coordinate. A more systematic method was established in the 1970's by Fukui 
[3], who used a steepest descent path in terms of a mass-weighted Cartesian 
coordinate system as a reaction coordinate; the "intrinsic reaction coordinate" 
(IRC). Their differential geometry techniques [4] increased the value of the 
method, and their group followed with some applied examples [5]. Truhlar and 
coworkers have also made extensive use of the IRC and have developed a 
variational transition state theory formalism for dynamics calculations based on 
the IRC [6]. From the early 1980's, Miller and coworkers have extended the 
work of Fukui, and proposed the reaction path Hamiltonian [7]. Hougen et al. 
[8] studied the couplings between rotations and vibrations, and derived the 
original rotational-bending (inversion) Hamiltonian using an internal coordinate 
as a reaction coordinate, and applied the method to some small molecules. 

The original idea of a gradient extremal path (GEP) is due to Pancir [9], who 
proposed a path where the gradient vector is always an eigenvector of the 
Hessian matrix. Reaction paths based on that criterion were tested in simple 
model systems by Miiller [10]. His conclusions were, however, rather pessimistic 
regarding the usefulness of the GEP concept. A rigid mathematical definition was 
given by Basitevsky et al. [11], who also proposed the physical interpretation of 
a GEP as a "a least ascent path". They concluded that the GEP and the IRC 
pass through the same points only where the norm of the gradient is zero (i.e. 
stationary points) or where the curvature of the IRC is zero. In other cases, the 
deviation between the GEP and the IRC is proportional to the curvature of the 
steepest descent path and to the square norm of the gradient. It is also inversely 
proportional to the square of the normal frequency for the corresponding bath 
mode, as will be discussed in the following section. In general, a reaction path 
approach gives a good description when the vibrational frequencies in the bath 
are high compared to that of the large amplitude vibration (this is a required 
condition for a vibrational adiabatic model). The couplings between the large 
amplitude and bath modes are expected to be small in this case and the 
vibrational amplitudes in the bath are also relatively small. When the above 
condition is satisfied, Basilevsky's analysis suggests that the GEP is close to the 
IRC. 

In 1986, Hoffman et al. discussed the basic nature of GEPs [12] with 
emphasis on their usefulness for molecular dynamics. Their analysis shows that 
third-order derivatives play an important role for characterizing GEPs. Very 
recently, J~rgensen et al. [13] have developed efficient algorithms for finding 
transition states using the second order GEP, starting from an equilibrium 
geometry. To date this is the only application of GEPs to molecular structure. 

One reason why the GEP concept requires attention is its interpretation as a 
least ascent path. It would thus seem to be more appropriate for describing the 
initial phase of chemical reactions than the IRC. An IRC is more naturally 
associated with the later state of a reaction (the requirement for microscopic 
reversibility will of course prevent the use of different paths for forward and 
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backward reactions). Another reason is the local criterion defining a GEP. 
Several schemes are in use for obtaining (approximate) IRCs in molecular 
systems. However, roundoff  errors induced during numerical calculations tend to 
make an IRC unstable and inaccurately determined. There is no easy way to 
remove these roundoff  errors, since no local criteria define an arbitrary point on 
an IRC. 

In this work, we have used the GEP as a reaction path to describe large 
amplitude vibrations. In the following sections, we will discuss the methods and 
algorithms used, and present some numerical results for vibrational states of 
N H 3 and H30 +. 

2. Gradient extremal path 

The most rigid discussion of  the GEP concept is due to Hoffman et al. [12] in 
1986. Assuming an M-dimensional potential surface: 

V = f ( x )  = f ( x l ,  X 2 . . . . .  XM) , (2.1) 

the term contour subspace is introduced to denote the ( M -  1) dimensional 
subspace defined by the condi t ionf(x)  = constant. The GEP is defined as a path 
where the absolute value of the gradient is extremal on each contour subspace. 
Mathematically, it is defined as follows: The projection matrix (po) 

projects an arbitrary vector a onto the direction which is parallel to the gradient. 
The explicit form of  p0 is 

eo= [vf>< vfl 
<vflvj 3 (2.3) 

We will use the following notations for the gradient and the Hessian: 

H(x)  = (VVf(x)), (2.4a) 

g(x)  -- (Vf(x)). (2.4b) 

In this notation, p0 can be rewritten as 

p 0 _  Ig ) (g  I 
g2 (2.3') 

The projection matrix, P = 1 - p0 projects an arbitrary vector onto the direction 
which is perpendicular to the gradient. In order to find the extremal condition of  
Igl, one can now consider the variation of  the square norm of  g, i.e. 

V(g 2) 
2 - Hg. (2.5) 
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This expression can be decomposed into directions which are parallel and 
perpendicular to the gradient. The parallel component is 

P~ P ~  = 2g, (2.6) 
2 

where 2 has been defined as 

Consequently, 

2 - g T H g  
g2 (2.6a) 

PV(g 2) 
- H g  - 2g. (2.7) 

The gradient extremal is defined by the condition that (2.7) vanishes: 

H ( x ) g ( x )  = 2 (x )g (x ) .  (2.8) 

2.1. Second order G E P  

JOrgensen et al. [13] have proposed a practical algorithm for obtaining the GEPs 
on multi-dimensional potential hypersurfaces in polyatomic molecules. The key 
point of their procedure is based on the method of trust region within which a 
potential surface is well described by a second order Taylor expansion. The 
advantage of their method is that the entire procedure is resolved into simple 
constrained optimizations using the molecular gradient and the Hessian matrix. 

Their walking algorithm can be summarized as follows: Let x k be a point on 
the GEP reached in the kth step of the walk. Our aim is to find the next point 
(xk+ 1), i.e. to determine the displacement vector, Axk 

Axk = xk + 1 - xk. (2.9) 

In a sufficiently small region around xk, a second order Taylor expansion of the 
potential surface can be performed: 

1 T V(2)(x~ + Axe) = V(x~) + gr(x~) Axk + 5AxkH(x~)  Axk. (2.10) 

In this region, the following simplifications apply for H, g and 2 (see (2.6a)): 

H(x~) = H ( con st). (2.11 a) 

)~(xk) = 2 (const). (2.1 lb) 

g(xk + Axk) = g(xk) + H Axk. (2.1 lc) 

At the point x k + Axg, the following relation should be satisfied for the gradient 
extremal condition (see (2.8)): 

(H - 21)H Axk = - - ( H  - 21)g. (2.12) 
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Let v be the eigenvector of H belonging to 2: 

(H - 21)v = 0. (2.13) 

If  2 is non-degenerate, a projection operator perpendicular to the gradient can be 
defined: 

P = 1 - vv r. (2.14) 

If  P is applied to (2.12) from the left, one obtains 

P H  Axk = - P g .  (2.15) 

Since [P, H] = 0, we finally arrive at the following equation: 

Axk = - P H - I g  + vv r Axk. (2.16) 

Introducing c~ = v r A x k ,  we can write (2.16) as 

Axk = - - P H - l g  + c~v. (2.17) 

JCrgensen et al. used (2.17) for their potential surface walking algorithm, c~ is 
determined by their step size control algorithm [ 14], such that the new xk + 1 point 
is still in the local region where a second order Taylor expansion is justified. The 
sign of e specifies the direction of the walk. If the sign is positive, the walk leads 
to a (local) energy minimum point. If e is negative, one will reach a saddle point. 

2.2. G E P  as a reaction coordinate 

The GEP has the property that it always passes through the points where the 
absolute value of the gradient is extremal. In particular, all local energy minima 
and saddle points can be found by following (all) the GEPs on a surface. The 
GEP starting at a minimum energy point and following the direction of 
minimum gradient (one of the extremal conditions) in each contour subspace is 
a least ascent path from the minimum energy point. 

It would seem natural that the GEP starting at the energy minimum point 
(reactant) continues to the saddle point (transition state). In fact, hbrgensen et al. 
carried out some numerical calculations for small molecules and demonstrated 
that the GEPs starting at the equilibrium geometries did indeed reach the 
transition states [13]. However, there are a number of different GEPs on a 
potential hypersurface (see [12]). Generally, it is not always true that the same 
GEP passes through the reactant, the transition state and the product of  interest. 
This is not only a problem for GEP, but applies also to IRC paths. Nevertheless, 
the fact that the IRC approach has been successfully used in a large number of  
quantum [15] and semi-classical [16] applications encourages us to investigate 
also the GEP as a reaction path. 

As the GEP is defined by local criteria, it can be calculated starting from any 
stationary point. The procedures of going up- and downhill can both be used and 
give identical results. This is a great advantage compared with the IRC, which is 
always defined starting from a saddle point, descending to a (.possibly local) 
minimum point. 
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Equation (2.17) may be accurate enough for finding transition states. How- 
ever, for a vibrational calculation, the path itself is important. In a true GEP, 
P H - ~ g  is always zero. In (2.17), the old P H - l g  in the kth iteration is used for 
the (k + 1)th iteration. Generally, the approximate GEP calculated in actual 
applications using (2.17) tends to take a zigzag course about the true GEP. This 
problem can be remedied by using 

x'k = xk - PHZlgk  (2.18) 

instead of x~ for the reaction path. 

3. The reaction path Hamiltonian 

In a vibrational calculation using a reaction path, it is assumed that the 
large-amplitude vibrational mode is well described by a one-dimensional curvi- 
linear coordinate. By this assumption, the higher order terms arising from other 
degrees of freedoms are neglected, and the classical total vibrational Hamiltonian 
can be approximated as 

~ ~uf ( r, Pr, q, Pq) 1 T Grr Grq Pr 

+ Vo(r) + g(r) T(q _ qo) + �89 - qo) rH(r)[q - qo). (3.1) 

For the remaining degrees of freedoms (q) (which we refer to as the bath), the 
potential energy contributions are approximated to second order terms along the 
reaction coordinate. The remaining problem is to determine the kinetic energy 
expression, i.e. the G matrix. 

3.1. The steepest descent path 

Before discussing the reaction path Hamiltonian of the GEP, let us consider that 
of the IRC [7], which is simpler. We first assume that the steepest descent 
reaction path (S(r)) is already obtained in a mass weighted Cartesian coordinate 
system and that a normal vibrational analysis is also carried out along the 
reaction path in the (3N - 7) dimensional space. (The components parallel to the 
reaction path and the components corresponding to the translations and rota- 
tions are projected out. The Eckart condition [17] is the best criterion for the 
latter purpose, even though a complete removal of rotational components is not 
possible.) Since the tangent direction of the steepest descent path is always 
parallel to the gradient, no component of the gradient remains in the projected 
subspace. Therefore, if we introduce the normal coordinates (Q) in the projected 
subspace, (3.1) can be written as 

= ~o~(r)Qk. (3.2) \aQ  aQQ} + Vo(r) + Y, 2 2 
k = l  
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Consider the kinetic energy part of (3.2). An arbitrary point in a mass weighted 
Cartesian coordinate system (X) can be expressed in terms of r and Q: 

3N--7 
X,. = St(r) + ~, = S,.(r) + ~ Lik(r)Qk, (3.3) 

k = l  

X~= { ~ i x , , x / ~ y , , x / ~ z i } ,  (3.4) 

where S is the reaction path, ~ is the small displacement from the reaction path 
and L is the transformation matrix from normal coordinates Q to mass weighted 
Cartesian coordinates X. The classical kinetic energy in terms of momenta in the 
mass-weighted Cartesian coordinate system can be written as 

N 
T Z l 2 (3.5) = 5P xr 

i=1  

T can be expressed in terms of (Pr, PQ) by canonical transformations [18] using 
the relations in (3.3). The final results is as 

3N 7 r - -  k 
T ~ -  2 1 2  , = ( 3 . 6 )  

k = l  i L l _ l _  k~_, akBk3N_6(r ) 

where B,j is defined as follows. 

N 

B o. = ~ Lmi(r)Lmj(r) ( j  = 1, 3N - 7), (3.7a) 
m = l  

N 

Bi 3N-6 ~- 2 Lmi(r)Sm(r)" ( 3 . 7 b )  
m = l  

One advantage of the steepest descent reaction path is obvious here. The IRC 
always follows the direction of the gradient, which leads to two important 
simplifications: 

1. The bath is always orthogonal to the reaction path. 
2. There are no rotational or translational components induced. 

3.2. The gradient extremaI path 

Based on the definition (2.8), one may be led to assume that the GEP also 
follows the direction of the gradient. However, this is not the case. The tangent 
of  a GEP always makes a finite angle to the gradient [11, 12]. In evaluating the 
expression for the Hamiltonian, one must therefore consider the remaining 
gradient component in the bath and the induced rotational and translational 
components of  the reaction path. 

In the second order GEP, the step vector Axk is expressed as a linear combi- 
nation of the Hessian eigenvectors. To remove the rotational and translational 
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components, it is sufficient to remove these components from the Hessian matrix 
(see Appendix 1). Therefore, we define the projection operator, P ,  which projects 
an arbitrary vector onto the translational and rotational component space. To 
first order, the projected Hessian, 

H '  = (1 -- Prt)H(1 -- P~t), (3.8) 

has no component in the space of rotations and translations. 
The next problem is the remaining gradient components in the bath. There 

are several ways to address that problem: 
The easiest way is to treat the gradient the same way as in the case of the 

IRC. In this case, the gradient vector still has a component in the bath. The 
reaction path Hamiltonian is changed to 

:ut:(r' P" Q' ?Q) = ~(P'PQ) GQ, GQQJ pQ 

3 N  - -  7 3 N  - -  7 

+ Vo(r) + F, fk(r)Qk + F, ~(r)Q~.  (3.9) 
k = l  k = l  

This straightforward extension is practical and simple when the linear term, f is 
small. The fatal weakness of this approach is that some of the o) may become 
imaginary near the saddle point when f i s  not small. The Hessian matrix has one 
negative eigenvalue 2neg in the region of the saddle point. The route to a nearby 
(possibly local) minimum is approximately parallel to the corresponding eigen- 
vector 1/neg. In the IRC approach, Vneg is also a tangent of the reaction path. 
Therefore, no negative eigenvalues remain after the reaction path components 
have been projected out. If f is small, the same situation can be expected with the 
GEP since it also follows the direction of the gradient and has a trajectory 
similar to that of the IRC (the difference between GEP and IRC is discussed in 
Sect. 4). However, when f is not small, the tangent of the GEP can be rather 
different from the direction to the minimum. In this case, some components of 
Vneg do remain in the projected space and negative eigenvalues may arise in the 
bath. If this situation occurs, .X~ in (3.9) is unbounded. 

Even if there is some finite angle between the direction of the gradient vector 
and the tangent direction of the reaction path, the reaction path roughly follows 
the direction of the gradient, in order to reach the saddle point. Another 
approach is, therefore, to use the non-orthogonal bath where the gradient 
components, but not the reaction path components, are projected out. This 
procedure never encounters the difficulty described above. As the gradient vector 
is always an eigenvector of the Hessian, the new Q set in the bath can be 
obtained by just diagonalizing the Hessian matrix, H '  in (3.8). In this model, the 
form of the reaction path Hamiltonian is the same as that of the steepest descent 
path in (3.2), but the (G) matrix becomes more complicated. 

Miller et al. derived the reaction path Hamiltonian for IRC [7a] using 
classical mechanics. An analogous expression can be derived quantum-mechani- 
cally as follows: 

The kinetic energy operator in a mass-weighted Cartesian coordinate system 
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is expressed as 

~ 1  c ~2 
3- = - ~ 2 OX~" (3.10) 

The matrix element of  Y'- for an arbitrary bra, (~o I and key, 1)~) can be written 
as follows in terms of general coordinates (q) (see Appendix 2): 

lf;.~ _ l & p * ~ j ( X )  dq, (3.11, 
= ajk 0% z=<•lJIz> ,k 

where the transformation a and the Jacobian, J are defined as 

OX~ 0X~ (3.12a) 

The kinetic energy operator is then expressed as 

(3.13a) 

rP* ( ~ )  t --- &P*c~qj" (3.13b) 

It is easier to evaluate (3.13) in actual calculations than the more formal 
expressions [19], since no second derivatives of  the wave function and no 
derivatives of a need to be evaluated. 

It can easily be shown that the a -1 matrix in (3.13) corresponds exactly to 
the matrix G in (3.2). The explicit form of a can be determined directly from 
(3.3), (3.12a) (see Appendix 3). 

The difference between Miller's reaction path Hamiltonian and ours is that 
(A3.7) is a more general expression for the G matrix used. If we apply the 
constraints (3.14), our formula agrees exactly with Miller's expression. 

L~,.(r) = Tm(r) = O, (3.14a) 

0&(r) 0&(r) 
L~m(r)Le'~(r) + Or 3r - = 6~. (3.14b) 

m 

(3.14a) enforces the orthogonality between the tangent direction of reaction path 
and the bath. (3.14b) represents the completeness of the orthonormalized {L, S'} 
set. 

c(r), tim(r) and R(r) are always unity in (A3.7). However, the evaluation of  
these expressions is still rather cumbersome. Therefore, one may instead use 
second-order Taylor expansions for (A3.7a)-(A3.7d). These results are shown in 
Appendix 4. 
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4. Deviations from the steepest descent path 

Basilevsky et al. [ 11] discussed the deviation of the GEP from the corresponding 
steepest descent path for a two-dimensional system. Using the formulas in the 
previous section, we can estimate the deviation for a more general case. 

The gradient extremal condition is defined by equating (2.7) to zero. It can 
be also written using the normal coordinates in (3.2) as 

d(g 2) 
- 0, (4.1) dQg 

where Qg is a normal coordinate in the bath for the GEP reaction path. From the 
definition of a reaction path Hamiltonian in (3.2), g can be expressed in terms of 
r and Q~ for a steepest descent reaction path. Assuming that the direction of Qg 
and Qs are almost same, the approximate gradient extremal condition can be 
written as 

~(g2) 
0. (4.2) 

dQ, 

This condition can be evaluated as follows (see also Appendix 5): 

~(g2) 2 (dV0(r)~2 ~ do~i 
OQi - \ ~ - r  J ui(r) + 2 c~ ~r Qi + 2m/4(r)Qi = 0. (4.3) 

The deviation of the GEP from the steepest descent path is estimated by the 
displacement of Q in (4.3): 

0 V0(r)'] 
dr ) u;(r) 

Q~ = O Vo(r) &o[ (4.4) 

~ + ~ %{8 dr 

In (4.4), (OVo(r)/Or) 2 represents the square norm of the gradient in the steepest 
descent path, u is the curvature partitioned among bath modes (see [7a], p. 103). 
Q becomes zero (i.e., the GEP and the steepest descent path pass through the 
same points) only when the gradient is zero or the steepest descent path is a 
straight line. In other cases, the difference is roughly inversely proportional to the 
fourth power of the bath frequencies. When a reaction path approach gives a 
good description and the vibrational adiabatic separation (which is discussed in 
the next section) is applicable, the bath frequencies are high, compared to that of 
the large-amplitude mode, and the GEP is therefore expected to be similar to the 
steepest descent path. 

5. Adiabatic separations 

Even though Eqs. (A4.1) become simpler than (A3.7), the Schr6dinger equation 
is still difficult to solve due to its relatively high dimensionality. Marcus et al. 
proposed the vibrational adiabatic model [2], which is essentially analogous to a 
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zeroth BormOppenheimer separation between the reaction coordinate and the 
normal corrdinates in the bath. This approximation reduces the problem to a 
one-dimensional one. The contributions from the bath modes are included by 
adding their normal frequencies at each point to the one-dimensional potential 
energy along the reaction path. However, this procedure cannot be used exactly 
in the case of the GEP, since the path is not orthogonal to the bath, i.e. T(r) in 
(A3.6e) is not small with respect to some of the Q coordinates. In general, not 
all the normal coordinates have large T(r) values, but a few of them do. 
Therefore, we can divide the vibrational modes into three parts: 

A. The large amplitude mode, which is described by the reaction coordinate; 

B. Diabatic modes, those of the normal modes having large T(r) values; 

C. Adiabatic modes, normal modes having small T(r) values. 

Usually, the number of diabatic modes is small. A vibrational Schr6dinger 
equation treating those modes and the reaction coordinate can be solved 
practically by methods such as the one described in the next section. 

6. Basis set expansion 

Several methods are available for solving the multi-dimensional Schr6dinger 
equation for vibrational states. We have used the basis set expansion method, 
which is similar to the MCSCF method for electronic states. 

For each degree of freedom ~j (~; represents r and Q in this case) we 
introduce a set of Gaussian basis functions 

q~s,, (~J) = (~J - ~J 0) hi,/exp( - bi, s(~j - G ~ 2), (6.1 a) 

where b,.s. are harmonic exponents to be optimized and n U are non-negative 
integers chosen according to usual criteria. From these functions, we form 
many-dimensional product basis functions of the form 

~',(~,, ~z, - - -, ~,,) = [ ]  q~i,~,(~J), (6.1b) 
J 

where i = (il, i2, i3 . . . .  ). The total vibrational wavefunction can now be expanded 
a s  

7'(~, ,  ~2, - .  - ,  4 . )  = ~ G 0 i ( r  ~ 2 ,  - - . ,  ~ . ) ,  
i 

(6.2) 

where (5) are expansion coefficients to be optimized together with the harmonic 
exponents, b~. 

The next step is the orthonormalization of the product functions tpi. For this 
purpose, it is sufficient to orthonormalize the one-dimensional functions {q~} for 
each individual j. Using the symmetric orthogonalization method [20], the 
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orthonormalized new sets, {~b'} and {0'} are as follows: 

l 
~b;,,(ij) = Zk q~zk(~J)U(k'J] e ~ } J  )' (6.3a) 

0;( i , ,  r . . . . .  in) = l~ q~,~)(ij), (6.3b) 
J 

I / / ( ID  ~2 . . . . .  i n )  ~" E C ~ ' 0 ; ( ~ l '  ~2 . . . .  , ~ . ) ,  ( 6 . 3 C )  
J 

S(J)u(J) = u(J)~ (j), (6.3d) 

where S (j) is the overlap matrix for the one-dimensional basis functions repre- 
senting ~j. 

For the optimization of the variational parameters, a two-step scheme is 
used, neglecting the couplings between C and b, since the number of configura- 
tions becomes rather large. This procedure is almost the same as the MCSCF 
procedure for electronic states. The CI part is written as 

H C  = EC. (6.4) 

We can write the Hamiltonian symbolically as 

X = J + " f  = Z I~ d~J)(ij) + Z l-[ ~}J)(i) = Z I~/~J)( i) .  (6.5) 
i j i j i j 

The H matrix can be expressed as 

Hm= = I,P;,> (6.6) 
i j 

The gradient vector (G) and the Hessian matrix (H) in terms of the harmonic 
exponents are expressed as 

=s 
(G)i = C* C - ( E )  C t - -  C, (6.7a) 

Ob~ 

( H ) / j  = C t 6~ 2H c~H OS C C* 0H 0S C 
Ob i ~bj C - C t . . . . .  ~bi Ob~ Obi Obj 

OS 0S 02S 
+ 2 ( E ) C  t ~ ~ C - ( E ) C  t -~bi Obj C, (6.7b) 

where ( E )  and C are eigenvalues and -vectors of the CI part. The explicit form 
of G and H can be easily obtained. 

7. Numerical calculations 

Numerical calculations were carried out for various vibrational states of HsO § 
and NH 3 in order to check the accuracy of the method. 
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7. I. Molecular vibrations in N H  3 

A number of theoretical and experimental studies on NH 3 have been reported, 
making this molecule a suitable example system. In this work, we used a simple 
SCF potential surface, since previous work [21] indicates that SCF calculations 
give quantitatively reasonable results. The basis set used was the MAXI-1 by 
Tatewaki [22], with two d-type polarization functions on N and a p-type 
polarization function on H added. Using this scheme, and analytical molecular 
gradients and Hessians, the GEP was calculated directly in a mass-weighted 
Cartesian coordinate system. 

The calculated equilibrium geometry and some properties are given in Table 
1, together with previous theoretical results [21] and experimental values [23]. 
The calculated properties are quite similar, indicating that our potential surface 
forms a realistic basis for the further treatment of vibrational structure. 

Figure 1 shows the GEP in the subspace of  A1 symmetry, together with full 
potential surface in this space. The GEP is a smooth curve passing through the 
two equilibrium geometries and the saddle point. The curvature becomes larger 
as the angle increases. The steepest descent path and the GEP are indistinguish- 
able on the scale of this figure. The angles between the tangent direction of the 
GEP and the direction of the gradient along the GEP are shown in Table 2. The 
angles are always very small (for the steepest descent path, the angles are zero by 
construction). The normal frequencies at the equilibrium geometry and at the 
saddle point are shown in Table 3. The following notation is used for the 
vibrational modes: 

0:A1 bending mode; 
p: A1 stretching mode; 
u: E asymmetric stretching mode; 
w: E wagging mode. 

Table 1. Computed properties for the NH 3 molecule in a.u. 

This work Stevens [21] Exp. [23] 

Total energy - 56.197774 -- 56.22113 

Equilibrium 
geometry 

R(O~H) 1.894 1.892 1.912 
Deviation from 
planarity 21.80 ~ 22.57 ~ 22.12 ~ 

Saddle point 
R(O--H) 1.865 1.861 
Deviation from 
planarity 0.00 ~ 0.00 ~ 

Inversion barrier 
(kcal/mol) 6.01 5.89 5.77 
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Fig. 1. The potential surface 
and the gradient extremal 
path in the (p, 0) space for 
NH 3. Each contour line: 
0.001 (a.u.) 

3.50 

2.70 

• 

1.90 

.~ 1.10 

0.30 

0.0 

-0.5 

-2.00 

w mode 

(gradient mode) 

I I I 
-1.00 0.00 1.00 2.00 
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Fig. 2. The variation of 
Hessian eigenvalues along 
the reaction path in NH 3. 

0 has an imag ina ry  f requency at  the saddle  point .  Frequencies  co r re spond ing  
to the ba th  are changing  by  100-200 cm 1 between the equi l ib r ium geomet ry  and  
saddle  point .  In  Fig.  2, the changes  o f  the Hess ian  eigenvalues are p lo t t ed  agains t  
the reac t ion  coord ina t e  o f  the GEP.  The mode  having a negat ive eigenvalue at  
the saddle  po in t  is the one para l le l  to the gradient .  The  next  lowest  e igenmodes  
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TaMe 2, Angle between the tangent of  
the GEP and the direction of  the gradient 
in N H  3. r =  1.123 is the equilibrium 
geometry, r = 0.0 is the saddle point  

Reaction coordinate Angle (~ 
(a.u.  • ,/~.--~.~.) 

0.000 0.0 
O.2O0 0.2 
0.400 0.4 
0.600 0.4 
0.800 0.4 
1,000 0.2 
1.123 0.0 
1.223 0.2 
1.423 0.5 
1.623 0.9 
1.822 IA 
2.022 0.8 

Table 3. Normal  frequencies of  N H  3 at the 
equilibrium geometry and the saddle point in 
cm-I 

Equilibrium Saddle point 
geometry 

0 1159 937(i) 
p 3666 3793 

u I 3782 4002 
u 2 3782 4002 

w I 1800 1703 
w 2 1800 1703 

Table 4. Vibrational frequencies for NH 3 in 
the two-dimensional system (0, p) in c m -  J 

Table 5. Diabatic effects on the vibrational 
frequencies from the p mode in NH3 in c m -  

np n o Exact GEP IRC np n o Diabatic Adiabatic None  
Hamit tonian 

0 0 + 0 0 0 
0 0 + 0 0 0 0 O- 1.0 1.0 t.2 
0 O- 0.9 1.0 1.0 0 1 + 1012 I012 996 
0 1 + 1027 1012 I011 0 1 -  1056 1056 1047 
0 I -  1069 1056 1056 0 2 + 1730 1731 1703 
0 2 + 1740 1730 1730 0 2 -  2060 2060 2050 
0 2 -  2069 2060 2059 

(which are twofold degenerate) correspond to the w modes. The highest two are 
the p and u modes. The variations of Hessian eigenvalues are largest in the u 
modes causing a crossing between the p mode and the u mode. 

The calculated vibrational frequencies for the A~ subsystem are summarized 
in Table 4 together with the frequencies using the two-dimensional exact 
Hamiltonian and the IRC. The agreement between the GEP and the exact 
Hamiltonian (EH) calculations is satisfactory. These results suggest that the GEP 
approach is appropriate for this system. Since the IRC and the GEP are very 
similar, the IRC is also appropriate, and gives almost the same frequencies as the 
GEPs. 

In Table 5, the diabatic effects have been investigated. Diabatic is a two- 
dimensional calculation treating the reaction path Hamiltonian exactly, adiabatic 

is the one-dimensional calculation where the bath is treated adiabatically and in 
none the bath has been neglected completely. Obviously, the diabatic effects are 
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Table 6. Vibrational frequencies for N H  3 including the effects from all the 
bath modes in cm- 

N. Shida et al. 

np n o n~, n,~ nw, n~2 Adiabatic Exp. [23] 

0 + 0 0 0 0 0 0 0.0 
0- 0 0 0 0 0 0.7 0.7934 
1 + 0 0 0 0 0 1034 932.44 
1- 0 0 0 0 0 1066 968.04 

negligibly small, whereas it is important to include the effects from the bath 
adiabatically. 

The vibrational frequencies including the effects from all the bath modes are 
summarized in Table 6. The inversion splitting agrees very well with the 
experimental value. 

7.2. Molecu lar  vibrations in 1130 + 

In the previous section, we analyzed various aspects of  our method by treating 
the bending vibrational states of NH3 molecule. The inversion splitting is, 
however, too small for a meaningful comparison. The H3 O+ ion has almost the 
same structure as NH3, but a much larger inversion splitting. 

The potential surface was obtained using the SCF method. The basis set used 
in this calculations was the MIDI4 [24] by Tatewaki et al., with a d type 
polarization function and a p on hydrogen. Partly fortuitously, this calculation 
gives an inversion barrier of 2.06 kcal/mol, very close to the results of  much more 
accurate studies [25]. 

Figure 3 shows the GEP and the potential surface in the A1 subspace. The 
potential surface and the GEP are similar to those of  NH3 (see Fig. 1). However, 
the potential coupling becomes smaller and the GEP is almost a straight line in 
this case. Again, there is no visible difference between the GEP and the IRC. 

The normal frequencies at the equilibrium geometry and at the saddle point 
are summarized in Table 7. These frequencies resemble those of NH3 (see Table 
3). However, the change of  the bath frequencies between equilibrium and the 
saddle point is smaller than in NH3, since the equilibrium structure is closer to 
the saddle point geometry. Still, the bath vibrations have a significant effect on 
the inversion splitting. 

Table 8 summarizes the results obtained with the exact Hamiltonian, the 
GEP and the IRC in the A1 subspace. The agreement between the exact 
calculations and the GEP is encouraging. (The frequency of the (0, 1 +) state is 
already larger than the barrier height and there is no more doubling above this 
state.) The IRC and the GEP give almost the same frequencies, as was the case 

for NH 3. 
The influence from the bath is summarized in Table 9a-c, where the effects 

from the p, u, and w modes are considered separately. In each table, the diabatic 
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40.0 

1.65 1.75 1.85 1.95 
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Fig. 3. The potential surface 
-- and the gradient extremal 

path in the (p, 0) space for 
2.05 H30 +. Each contour line: 

0.001 (a.u.) 

Table 7. Normal frequencies for H30 + at 
the equilibrium geometry and the saddle 
point in cm 

Equilibrium Saddle point 
geometry 

Table 8. Vibrational frequencies for H30 + in 
the two dimensional system (0, p) in cm- i 

np n o Exact GEP IRC 
Hamiltonian 

0 0 + 0 0 0 
0 934 704(i) 0 0 60 64 64 
p 3835 3830 0 1 + 606 608 608 

0 I -  1004 I016 1015 
u~ 3946 4012 

0 2 + 1555 I573 1573 
u 2 3946 4012 

0 2- 2158 2187 2186 
w I 1785 1675 
w 2 I785 1675 

and  the adiabat ic  calculat ion give almost  the same energies. The diabat ic  effects 

are always negligibly small, as in the case of N H  3. One interesting result is the 

remarkable  differences of  the inversion doublings.  Evidently,  the effects f rom the 
ba th  are impor t an t  for the inversion splitt ing in H3 O+.  

8.  S u m m a r y  and  c o n c l u s i o n s  

We have reported calculations of v ibra t ional  states using a gradient  extremal 
react ion path  (GEP) .  

By virtue of  the local criteria for such a path,  its evaluat ion is more stable 
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Table 9a-e. Diabatic effects from the r(a), u(b) and w(c) 
modes on the vibrational frequencies in H30 + in cm-1 

a) np n o Diabatic Adiabatic 

0 0 + 0 0 
0 O- 64 64 
0 1 + 608 608 
0 1- 1016 i015 

b) n..,  n . 2  n o 

0 0 0 + 0 0 
0 0 O- 52 52 
0 0 1 + 614 614 
0 0 1- 996 997 

C) H,~, t Rw2 H 0 

0 0 0 + 0 0 
0 0 0"- 82 83 

0 0 1 + 597 598 
0 0 1 - 1030 1032 

and easier than the IRC. It  may also be computationally less expensive, if  
computer  codes are available for the efficient analytic evaluation of  molecular 
Hessians. While the IRC can be also determined more efficiently when the 
Hessian is available, there is no local criterion and therefore no way to correct 
for successive buildup of inaccuracy in an IRC trajectory. In contrast, from a 
point approximately on the GEP one can always easily step back to the true GEP 
(even if the second order algorithm is not enough, the constrained optimization 
procedure in (2.18) can be repeated until the true G E P  criteria are fulfilled). This 
permits a larger step length and a more reliable path calculation than for the 
IRC. 

Furthermore,  for a vibrational calculation it is necessary to know the path 
also in the repulsive walls (outside the minimum points). The IRC path essen- 
tially cannot meet that requirement; in contrast, there is no problem to obtain 
the G E P  for the repulsive walls. 

The reaction path Hamiltonian of the GEP becomes slightly more compli- 
cated than that of  the IRC because of  the non-orthogonali ty between the 
reaction path and the bath. However, the additional terms in the Hamil tonian 
can easily be evaluated and are expected to be small in cases when the reaction 
path model is valid. 

The numerical applications to the inversion vibrational states of  N H  3 and 
H3 O+ indicate that: 

1. The GEPs were virtually indistinguishable from the IRC. The formal estimate 
of  the deviation between a IRC and a GEP  suggest that they ought to be very 
similar whenever a one-dimensional treatment of  the reaction is appropriate.  
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2. A one-dimensional GEP  treatment gives vibrational frequencies very close to 
those obtained with the exact Hamiltonian. 

3. The effects from the bath, which are important  for the inversion splitting of  
H30  +, are well described by an adiabatic treatment. 

Based on these experiences, it is reasonable to assume that a GEP  would often 
be an attractive alternative to the traditional steepest descent path ( IRC)  for a 
one-dimensional treatment of  a reaction process. Applications to systems such as 
C1 + H - - C 1 - ~ C 1 - - H  + C1 where the reaction path is strongly curvilinear are 
planned to test these assumptions. 
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Appendix 1 

Equation (3.3) applies to a molecule-fixed coordinate system. The relationship 
between a molecule- and a space-fixed coordinate system is 

<,, : x~,, + o(z, 0, 4 ) - ' x ,  = x o , ,  + O(z, 0, 4 ) - '  

,/ 3N--7 t x ISi(r) + k=, ~ L~k(t')Qk (i = 1, N), (Al.1)  

where X~, is an arbitrary point in a spaced fixed mass weighted Cartesian 
coordinate system, X o is the center of  mass in this coordinate system, O is the 
transformation matrix between the two coordinate system and (2, 0, ~b) are the 
Euler angles. To satisfy the condition that X 6, O and X represent pure trans- 
lations, rotations and vibrations, respectively, the following relations must be 
fulfilled: 

N 
E w/-~m~X, - = 0, (A1.2a) 

i=1  

N 

Z X, x ~- = 0. (A1.2b) 
i=1  

Sufficient conditions for (A1.2a) to be satisfied are 

N 

Z ~/~iS,(r) = 0, (A1.3a) 
i=1  

N 

~, x/~L~k(r) = 0, (Al .3b)  
i = l  
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Equation (A1.3b) is automatically satisfied in our procedures since we use the 
projected Hessian matrix, H '  in (3.8). The reaction path S is determined from 
(2.9), (2.17), (2,18). In each step, the step vector is a linear combination of 
eigenvectors of the projected Hessian matrix. Therefore, there is no degree of 
freedom with respect to rotational and translational components in the step 
vector. For this reason, (A1.3a) is automatically satisfied. It is usually impractical 
to satisfy (A1.2b) exactly. As LQ is assumed to be a small displacement from the 
reaction path, we adopt the Eckart condition instead of (A1.2b). Sufficient 
conditions are 

N 

2 S,.(r) x S;(r) = 0, (A1.4a) 
i = 1  

N 

~" S i ( r  ) x L;k(r )  = O. (A1.4b) 
i = 1  

These two equations are automatically satisfied for reasons described above. 

Appendix 2 

The matrix element of the kinetic energy integral for an arbitrary bra, (q~{ and 
ket, [Z) is 

f 
o z ]  1 

2 
(A2.1) 

The first term of (A2.1) becomes zero because of the boundary condition. 
Therefore, if we introduce the general coordinate, q, the matrix element (I) can 
be written as 

I l ~.,~ c3qj&p*Oqk~k if2 = - 22, - -  du = a]~ 1 (A2.2) 
2 Jj,k,~c~X~ Oqj ~?X~ 2 z~ ~qj ~qk du, 

where a-~ is defined as follows: 

a]~' -=~ ~qj Oqk (A2.3) ~x~ ~x~" 

It can be easily shown that a takes the form 

c~X~ ~X~ (A2.4) V ajk ~qj 0qk" 

If we change the variables of the volume element in (A2.2) to q, the final 
expression is obtained as 

I = ~ . 2  afs - -  J aq, (A2.5) 
a j ,  k #qj c~qk 
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where J is an Jacobian defined as 
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Appendix 3 

The relationship among mass-weighted Cartesian coordinates, reaction coordi- 
nate and normal coordinates is 

3N 7 
X, = Si(r) + Y. L,k(r)Qk (i = 1, N)  (A3.1) 

k--I 

where X~ is a three-dimensional vector representing the mass-weighted Cartesian 
coordinates of  a tom i. Therefore, the derivatives of  X with respect to r and Q are 

OX~ 8S~(r) 3 ~  7 8L~k(r) 
Or Or + - -  Qk, (A3.2a) k =  1 (~r 

~x~ 
= L=i(r). (AB.2b) 8Q, 

a can be calculated from (3.12a) as 

8Xo 8X~ (A3.3) V arnn 
8qm Oq." 

The explicit form of a is as follows: 

art = c(r) + 2 ~ ui(r)Qi + ~ vi j(r)QiQ. (A3.4a) 
i ij 

a,,m = tim(r) (m -r r), (A3.4b) 

3N 7 
arm = amr  = T i n ( r )  q- E W m i ( r ) Q i  ( m  r r ) ,  (A3.4c)  

k=l  

amn = 0 (m ~ r, n r r, m va n), (A3.4d) 

3N--7 
la] = (c(r) - y(r))R(r) + 2 ~ (u~(r) - z~(r))R(r)Q~ 

i - -1  

3N--  7 

+ ~ (vo-(r)-ag(r))R(r)QiQj, (A3.5) 
ij 

where c, u, v, ti, T, w, y, z, R, and ~ are defined as 

c(r) = ~ (0S~162 ~ 2 ' 

\ O r )  

O&(r) OGm(r) 
urn(r) = Y~ & & 

o~ 

(A3.6a) 

(A3.6b) 
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vm.(r) = ~ ~L: re(r) OL~,,(r) 
dr  & ' 

tim(r) = y, tJ~(r), 

= r ~&(r) V~(r) y--T2-r L~m(r)' 

c3L~.(r) 
Wren(r) = E L~,,(r) ~r ' 

o: 

r2,(r) 
y(r) 

/'?'i fl, (r)' 

Ti(r)wi,,(r) 
~m(r)= ~ fl~(r) ' 

R(O = [ I  ti;(r), 
i 

w#,(r)wi.(r) 
O~mn(r) = ~i fll (r) " 

The inverse of a can  be obtained analytically. It is 

( a - 1 ) ~  , la l  = R ( r ) ,  

fi~R(r) ( V~(r) ~ (a-') , ,m . lat = c(r) -- y(r) + ~ ,  [rS/l 

g(r) ( Tm(r)w,,i(r)'~tim(r) /I + 2 ~i u, (r) - z, (r) + Q, 

R(r) Wm,(r)Wm:(r)'~ 

R(r) Tm(r) R(r) 
(a--l)rm "In] = ( a - l )  .... " la]  = tim(r) tim(F) t~ " Wmi(F)ei 

R(t) Tm(r)T.(r) 
(a-1)m. " lal = - flm(r)fl.(r) 
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(A3.6c) 

(A3.6d) 

(A3.6e) 

(A3.6f) 

(A3,6g) 

(A3.6h) 

(A3.6i) 

(A3.6j) 

(A3.7a) 

(m ~ r), (A3.7b) 

(m Cr), (A3.7c) 

R(r) 
(Tm(r)wm(r) + T~(r)wmi(r))Qi 

fl,,(r) fi~(r) 7 

R(~) 
flm(~(r) ~ Wmi(r)wn/(r)QiQi (m =/:r,n Cr,  m Cn). (A3.7d) 
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Appendix 4 

The second-order Taylor expansions of  (A3.7) are 

(a - 1)~ j = ( 1 - y (r ) )  -1/~ _ ( 1 - y(r) )  -3/2 ~ (ui (r) - zi (r))Qi 
i 

+ � 8 9  + 
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3(u; (r) - z, (r))(uj (r) - zj (r))-] 
Q~Qj, 

J 

(a - 1)m m J(  1 -- y(r ) )  1/2 + ( t --  y (r ) )  -1/2 T2 ( r )  (m  • r), 

(a -1 ) rmJ  = (a - I ) m r J  = - ( 1 - y(r) )  - t / 2Tm(r  ) 

F Zm(r)_(ui(r! ~ z_ i(r)) _ Wmi(r)) l Q i +(1  
- Y ( r ) ) - l / 2 - -  ~ L (l  - y (r ) )  

( a - ' ) m . J =  (1 - y ( r ) ) - l / 2 T m ( r ) T . ( r )  (m =~r ,n  ~ r , m  C n ) .  

The Taylor expansion of  the Jacobian, J is 

J = ( I - y (r ) ) ' /2  + ( 1 - y (r ) )  - 1/2 ~ (U i ( f)  -- Zi (r))Qi  
i 

(A4.1a) 

(A4.1b) 

(m 4= r), 

(A4.1c) 

(A4. ld) 

(u i (r) - z i (r))(uj (r) --  zj (r))'] 
QiQj.  

1 - y ( r )  I 
(A4.1e) 

Appendix 5 

The gradient, g is expressed as 

c~V ~q~ OV 
~x  Oqi' (A5.1) 

where q are general coordinates (in this case {r, Q}). From (3.2), the potential 
energy for the steepest descent reaction path is written as 

3N-- 7 
V ( r , O ) = V o ( r ) +  ~ i 2 2 5_co k(r )Q k. (A5.2) 

k = l  
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The  der ivat ives  o f  V with respect  to r and  Q are  thus ob ta ined  as 

OV aVo(r) 3~- 7 , , &~ 
gr -- ~3r - ~l ~ + 2., ~ ~ Q2, (A5.3a)  

k = l  

OV 
gQ --- ~-Q = co(r)2Q. (A5.3b)  

The  square  n o r m  o f  the g rad ien t  is expressed as  

(g2) _ \g  QJ a -t(grgQ), (A5.4)  

where  a -~ is ( A 2 . 7 a ) - ( A 2 . 7 d )  with the cons t ra in ts  in (3.14a) and  (3.14b).  The  
( a p p r o x i m a t e )  form o f  a -  1 is 

1 
a;,. 1 = 2, (A5.5a)  

aT~ = a~r  ~ ~ 0, (A5.5b)  

- 1 ..~ ( A 5 . 5 c )  aQQ, ~ ,  (~QQ,, 

where  non -ad i aba t i c  and  higher  o rde r  terms are  neglected.  The  square  n o r m  o f  

g is now ca lcu la ted  f rom ( A 5 . 3 a ) - ( A 5 . 5 c ) .  I t  is 

(SV0(r )~  2 (~3Vo(r)'] 2 c~Vo(r) ~o)i(r)gC~ + ~,(o4(r)Q2i . 
(g2) : \ c~r tl - 2 \  c~r / ~ uiQ' + a -&-r " 

(15 .6 )  

Therefore ,  the der ivat ive  o f  g2 with respect  to Q can  be eva lua ted  as 

2 ( Vo(r) Vo( ) ~?Qi - \ ~ /  u~(r)+2---~r O)~(r)~-r Q~+2o)4(r)Qi. (A5.7)  
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